

disamby

[image: _images/disamby.svg]
 [https://pypi.python.org/pypi/disamby][image: _images/disamby1.svg]
 [https://travis-ci.org/verginer/disamby][image: Documentation Status]
 [https://disamby.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/verginer/disamby/]
	Free software: MIT license

	Documentation: https://disamby.readthedocs.io.

disamby is a python package designed to carry out entity disambiguation based on fuzzy
string matching.

It works best for entities which if the same have very similar strings.
Examples of situation where this disambiguation algorithm works fairly well is with
company names and addresses which have typos, alternative spellings or composite names.
Other use-cases include identifying people in a database where the name might be misspelled.

The algorithm works by exploiting how informative a given word/token is, based on the
observed frequencies in the whole corpus of strings. For example the word ‘inc’ in the
case of firm names is not very informative, however “Solomon” is, since the former appears
repeatedly whereas the second rarely.

With these frequencies the algorithms computes for a given pair of instances how similar
they are, and if they are above an arbitrary threshold they are connected in an
“alias graph” (i.e. a directed network where an entity is connected to an other
if it is similar enough). After all records have been connected in this way disamby
returns sets of entities, which are strongly connected 2 . Strongly connected means
in this case that there exists a path from all nodes to all nodes within the component.

Example

To use disamby in a project:

import pandas as pd
import disamby.preprocessors as pre
form disamby import Disamby

create a dataframe with the fields you intend to match on as columns
df = pd.DataFrame({
 'name': ['Luca Georger', 'Luca Geroger', 'Adrian Sulzer'],
 'address': ['Mira, 34, Augsburg', 'Miri, 34, Augsburg', 'Milano, 34']},
 index= ['L1', 'L2', 'O1']
)

define the pipeline to process the strings, note that the last step must return
a tuple of strings
pipeline = [
 pre.normalize_whitespace,
 pre.remove_punctuation,
 lambda x: pre.trigram(x) + pre.split_words(x) # any python function is allowed
]

instantiate the disamby object, it applies the given pre-processing pipeline and
computes their frequency.
dis = Disamby(df, pipeline)

let disamby compute disambiguated sets. Node that a threshold must be given or it
defaults to 0.
dis.disambiguated_sets(threshold=0.5)
[{'L2', 'L1'}, {'O1'}] # output

To check if the sets are accurate you can get the rows from the
pandas dataframe like so:
df.loc[['L2', 'L1']]

Installation

To install disamby, run this command in your terminal:

$ pip install disamby

This is the preferred method to install disamby, as it will always install the most recent stable release.
If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

You can also install it from source as follows
The sources for disamby can be downloaded from the Github repo [https://github.com/verginer/disamby].
You can either clone the public repository:

$ git clone git://github.com/verginer/disamby

Or download the tarball [https://github.com/verginer/disamby/tarball/master]:

$ curl -OL https://github.com/verginer/disamby/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Credits

I got the inspiration for this package from the seminar “The SearchEngine - A Tool for
Matching by Fuzzy Criteria” by Thorsten Doherr at the CISS 1 Summer School 2017

	1

	http://www.euro-ciss.eu/ciss/home.html

	2

	https://en.wikipedia.org/wiki/Strongly_connected_component

Indices and tables

	disamby
	disamby package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.2.3 (2017-07-01)

	0.2.2 (2017-06-30)

	0.1.0 (2017-06-24)

	Index

	Module Index

	Search Page

disamby

	disamby package
	Submodules

	disamby.cli module

	disamby.core module

	disamby.preprocessors module

	Module contents

disamby package

Submodules

disamby.cli module

Console script for disamby.

With the cli it is possible to carry out the disambiguation on the command line.
The script returns a json file with a name taken from the first field as the key and
a list of indices belonging to the same disambiguated cluster.

{'International Business Machines Inc': [1, 2, 5, 34, 90],
'Samsung': [4, 123],
'...': [...],
 ...}

To carry out the disambiguation you will need a csv file with proper headings
and optionally an index column. If not index column is specified then the position in the
csv is used in the json file to identify its members.

Only a basic processing pipeline is possible here, see the –help of the script
to know which are available.

Example usage:

$ disamby --col-headers name,address \
 --index inv_id \
 --threshold .7 \
 --prep APNX \
 input.csv output.json

disamby.core module

Main module.

	
class disamby.core.Disamby(data: typing.Union[pandas.core.frame.DataFrame, pandas.core.series.Series] = None, preprocessors: list = None, field: str = None)

	Bases: object

Class for disambiguation fitting, scoring and ranking of potential matches

A Disamby instance stores the pre-processing pipeline applied to the
strings for a given field as well as the the computed frequencies from the
entire corpus of strings to match against.
Disamby can be instantiated either with not arguments, with a list of
strings, pandas.Series or pandas.DataFrame. This triggers the immediate
call to the fit method, whose doc explains the parameters.

Examples

>>> import pandas as pd
>>> import disamby.preprocessors as pre
>>> df = pd.DataFrame(
... {'a': ['Luca Georger', 'Luca Geroger', 'Adrian Sulzer'],
... 'b': ['Mira, 34, Augsburg', 'Miri, 34, Augsburg', 'Milano, 34']
... }, index=['L1', 'L2', 'O1']
...)
>>> pipeline = [
... pre.normalize_whitespace,
... pre.remove_punctuation,
... pre.trigram
...]
>>> dis = Disamby(df, pipeline)
>>> dis.disambiguated_sets(threshold=0.5, verbose=False)
[{'L2', 'L1'}, {'O1'}]

	
alias_graph(threshold=0.7, verbose=True, weights=None, **kwargs) → networkx.classes.digraph.DiGraph

	This function creates the directed network connecting an instance to an other
through a directed edge if the the target instance has a similarity score above
the threshold.

	Parameters

	
	weights –

	threshold (float) – between 0 and 1

	verbose (whether to show the progressbar) –

	kwargs – arguments to pass to the score function (i.e. offset, smoother)

	Returns

	

	Return type

	DiGraph

	
disambiguated_sets(threshold=0.7, verbose=True, weights=None, **kwargs)

	

	
fields

	

	
find(idx, threshold=0.0, weights: dict = None, **kwargs) → list

	returns the list of scored instances which have a score above the
threshold. Note that strings which do not share any token are omitted
since their score is 0 by default.

	Parameters

	
	idx – index of the record to find

	threshold –

	weights (dict) –

	
fit(data: typing.Union[pandas.core.frame.DataFrame, pandas.core.series.Series], preprocessors: list, field: str = None)

	Computes the frequencies of the terms by field.

	Parameters

	
	data (pandas.DataFrame, pandas.Series or list of strings) – list of strings or pandas.DataFrame
if dataframe is given then the field defaults to the column name

	preprocessors (list) – list of functions to apply in that order
note the first function must accept a string, the other functions
must be such that a pipeline is possible the result is a tuple of
strings.

	field (str) – string identifying which field this data belongs to

Examples

>>> import pandas as pd
>>> from disamby.preprocessors import split_words
>>> df = pd.DataFrame(
... {'a': ['Luca Georger', 'Luke Geroge', 'Adrian Sulzer'],
... 'b': ['Mira, 34, Augsburg', 'Miri, 32', 'Milano, 34']
... })
>>> dis = Disamby()
>>> prep = [split_words]
>>> dis.fit(df, prep)

	
id_potential(term: typing.Union[tuple, str], field: str, smoother: str = None, offset=0) → dict

	Computes the weights of the words based on the observed frequency
and normalized.

	Parameters

	
	term (str, tuple) – term to look for or a tuple of proper tokens

	field (str) – field the word falls under

	smoother (str (optional)) – one of {None, ‘offset’, ‘log’}

	offset (int) – offset to add to count only needed for smoothers ‘log’ and ‘offset’

	Returns

	

	Return type

	float

	
static pre_process(base_name, functions: list)

	apply every function consecutively to base_name

	
score(term: str, other_term: str, field: str, smoother=None, offset=0) → float

	Computes the score between the two strings using the frequency data

	Parameters

	
	term (str) – term to search for

	other_term (str) – the other term to compare too

	field (str) – the name of the column to which this term belongs

	smoother (str (optional)) – one of {None, ‘offset’, ‘log’}

	offset (int) – offset to add to count only needed for smoothers ‘log’ and ‘offset’

	Returns

	

	Return type

	float

Notes

The score is not commutative (i.e. score(A,B) != score(B,A))

	
class disamby.core.ScoredElement(index, score)

	Bases: tuple

	
index

	Alias for field number 0

	
score

	Alias for field number 1

disamby.preprocessors module

This module contains the various string preprocessors

	
disamby.preprocessors.compact_abbreviations(string: str) → str

	Removes dots between single letters and concatenates them

	Parameters

	string –

	Returns

	

	Return type

	str

Examples

>>> compact_abbreviations('an other A.B.M this')
'AN OTHER ABM THIS'

	
disamby.preprocessors.normalize_whitespace(string: str) → str

	removes duplicates whitespaces as well as replace tabs and newlines with a space

	Parameters

	string –

	Returns

	

	Return type

	str

Examples

>>> normalize_whitespace('this is a long string')
'THIS IS A LONG STRING'

	
disamby.preprocessors.ngram(string: str, n: int) → tuple

	constructs all possible ngrams from the given string. If the string is shorter then
the n then the string is returned

	Parameters

	
	string –

	n (int) – value must be larger at least 2

	Returns

	

	Return type

	tuple of strings

Examples

>>> ngram('this', 2)
('th', 'hi', 'is')

	
disamby.preprocessors.trigram(string: str) → tuple

	

	
disamby.preprocessors.split_words(string: str) → tuple

	splits words on whitespace. This function is more reliable then .split(‘ ‘)
since it works with any whitespace character (i.e. those recognized by regex)

	Parameters

	string –

	Returns

	

	Return type

	tuple of strings

Examples

>>> len(split_words('a new day'))
3

	
disamby.preprocessors.remove_punctuation(word: str) → str

	removes all punctuation symbols from the string

	Parameters

	word (str) –

	Returns

	

	Return type

	str

Examples

>>> remove_punctuation('.has -a .few!')
'has a few'

	
disamby.preprocessors.nword(word: str, k: int) → tuple

	concatenates k consecutive words into a tuple

	Parameters

	
	word –

	k –

	Returns

	

	Return type

	tuple of strings

Examples

>>> nword('this that the other', 2)
('thisthat', 'thatthe', 'theother')

Module contents

Top-level package for disamby.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/verginer/disamby/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

disamby could always use more documentation, whether as part of the
official disamby docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/verginer/disamby/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up disamby for local development.

	Fork the disamby repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:verginer/disamby.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv disamby
$ cd disamby/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 disamby tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/verginer/disamby/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_disamby

Credits

Development Lead

	Luca Verginer <luca@verginer.eu>

Contributors

None yet. Why not be the first?

History

0.2.3 (2017-07-01)

	Fixes formatting breaking pypi display

0.2.2 (2017-06-30)

	working release with minimal documentation

	works with multiple field matching

	carries out all steps autonomously from string pre-processing to
identifying the strongly connected components

0.1.0 (2017-06-24)

	First release on PyPI.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 disamby	

 	
 	
 disamby.cli	

 	
 	
 disamby.core	

 	
 	
 disamby.preprocessors	

Index

 A
 | C
 | D
 | F
 | I
 | N
 | P
 | R
 | S
 | T

A

 	
 	alias_graph() (disamby.core.Disamby method)

C

 	
 	compact_abbreviations() (in module disamby.preprocessors)

D

 	
 	disambiguated_sets() (disamby.core.Disamby method)

 	Disamby (class in disamby.core)

 	disamby (module)

 	
 	disamby.cli (module)

 	disamby.core (module)

 	disamby.preprocessors (module)

F

 	
 	fields (disamby.core.Disamby attribute)

 	
 	find() (disamby.core.Disamby method)

 	fit() (disamby.core.Disamby method)

I

 	
 	id_potential() (disamby.core.Disamby method)

 	
 	index (disamby.core.ScoredElement attribute)

N

 	
 	ngram() (in module disamby.preprocessors)

 	
 	normalize_whitespace() (in module disamby.preprocessors)

 	nword() (in module disamby.preprocessors)

P

 	
 	pre_process() (disamby.core.Disamby static method)

R

 	
 	remove_punctuation() (in module disamby.preprocessors)

S

 	
 	score (disamby.core.ScoredElement attribute)

 	score() (disamby.core.Disamby method)

 	
 	ScoredElement (class in disamby.core)

 	split_words() (in module disamby.preprocessors)

T

 	
 	trigram() (in module disamby.preprocessors)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 disamby

 		
 disamby

 		
 disamby package

 		
 Submodules

 		
 disamby.cli module

 		
 disamby.core module

 		
 disamby.preprocessors module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.3 (2017-07-01)

 		
 0.2.2 (2017-06-30)

 		
 0.1.0 (2017-06-24)

_static/up.png

_static/up-pressed.png

